Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells.
نویسندگان
چکیده
H(+)-ATPase-rich (HR) cells in zebrafish gills/skin were found to carry out Na+ uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a functional genomic approach to identify 20 CA isoforms in zebrafish. By screening with whole mount in situ hybridization, only zca2-like a and zca15a were found to be expressed in specific groups of cells in zebrafish gills/skin, and further analyses by triple in situ hybridization and immunocytochemistry demonstrated specific colocalizations of the two zca isoforms in HR cells. Knockdown of zca2-like a caused no change in and knockdown of zca15a caused an increase in H+ activity at the apical surface of HR cells at 24 h postfertilization (hpf). Later, at 96 hpf, both the zca2-like a and zca15a morphants showed decreased H+ activity and increased Na+ uptake, with concomitant upregulation of znhe3b and downregulation of zatp6v1a (H+-ATPase A-subunit) expressions. Acclimation to both acidic and low-Na+ fresh water caused upregulation of zca15a expression but did not change the zca2-like a mRNA level in zebrafish gills. These results provide molecular physiological evidence to support the roles of these two zCA isoforms in Na+ uptake and acid-base regulation mechanisms in zebrafish HR cells.
منابع مشابه
MS no . : C - 00021 - 2008 Carbonic anhydrase 2 - like a and 15 a are involved in acid - base regulation and Na + uptake in zebrafish H + - ATPase - rich cells 5
H-ATPase rich (HR) cells in zebrafish gill/skin were found to carry out Na uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a 5 functional genomic approach to identify 19 CA isoforms in zebrafish. B...
متن کاملRole of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio).
The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), a member of the SLC12 family, is mainly expressed in the apical membrane of the mammalian distal convoluted tubule (DCT) cells, is responsible for cotransporting Na(+) and Cl(-) from the lumen into DCT cells and plays a major role in the mammalian renal NaCl reabsorption. The NCC has also been reported in fish, but the functional role in f...
متن کاملImmunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri).
The branchial epithelium of the mudskipper Periophthalmodon schlosseri is densely packed with mitochondria-rich (MR) cells. This species of mudskipper is also able to eliminate ammonia against large inward gradients and to tolerate extremely high environmental ammonia concentrations. To test whether these branchial MR cells are the sites of active ammonia elimination, we used an immunological a...
متن کاملGene expression of Na+/H+ exchanger in zebrafish H+ -ATPase-rich cells during acclimation to low-Na+ and acidic environments.
In mammalian nephrons, most of the Na(+) and HCO(3)(-) is reabsorbed by proximal tubular cells in which the Na(+)/H(+) exchanger 3 (NHE3) is the major player. The roles of NHEs in Na(+) uptake/acid-base regulation in freshwater (FW) fish gills are still being debated. In the present study, functional genomic approaches were used to clone and sequence the full-length cDNAs of the nhe family from...
متن کاملSpecific expression and regulation of glucose transporters in zebrafish ionocytes.
Glucose, a carbohydrate metabolite, plays a major role in the energy supply for fish iono- and osmoregulation, and the way that glucose is transported in ionocytes is a critical process related to the functional operations of ionocytes. Eighteen members of glucose transporters (GLUTs, SLC2A) were cloned and identified from zebrafish. Previously, Na(+),K(+)-ATPase-rich (NaR), Na(+)-Cl(-) cotrans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 5 شماره
صفحات -
تاریخ انتشار 2008